1   /*
2    * Copyright (c) 2003, Oracle and/or its affiliates. All rights reserved.
3    * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4    *
5    * This code is free software; you can redistribute it and/or modify it
6    * under the terms of the GNU General Public License version 2 only, as
7    * published by the Free Software Foundation.
8    *
9    * This code is distributed in the hope that it will be useful, but WITHOUT
10   * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11   * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12   * version 2 for more details (a copy is included in the LICENSE file that
13   * accompanied this code).
14   *
15   * You should have received a copy of the GNU General Public License version
16   * 2 along with this work; if not, write to the Free Software Foundation,
17   * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18   *
19   * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20   * or visit www.oracle.com if you need additional information or have any
21   * questions.
22   */
23  
24  /*
25   * @test
26   * @bug 4851638 4939441
27   * @summary Tests for {Math, StrictMath}.log1p
28   * @author Joseph D. Darcy
29   */
30  
31  import sun.misc.DoubleConsts;
32  import sun.misc.FpUtils;
33  
34  public class Log1pTests {
35      private Log1pTests(){}
36  
37      static final double infinityD = Double.POSITIVE_INFINITY;
38      static final double NaNd = Double.NaN;
39  
40      /**
41       * Formulation taken from HP-15C Advanced Functions Handbook, part
42       * number HP 0015-90011, p 181.  This is accurate to a few ulps.
43       */
44      static double hp15cLogp(double x) {
45          double u = 1.0 + x;
46          return (u==1.0? x : StrictMath.log(u)*x/(u-1) );
47      }
48  
49      /*
50       * The Taylor expansion of ln(1 + x) for -1 < x <= 1 is:
51       *
52       * x - x^2/2 + x^3/3 - ... -(-x^j)/j
53       *
54       * Therefore, for small values of x, log1p(x) ~= x.  For large
55       * values of x, log1p(x) ~= log(x).
56       *
57       * Also x/(x+1) < ln(1+x) < x
58       */
59  
60      static int testLog1p() {
61          int failures = 0;
62  
63          double [][] testCases = {
64              {Double.NaN,                NaNd},
65              {Double.longBitsToDouble(0x7FF0000000000001L),      NaNd},
66              {Double.longBitsToDouble(0xFFF0000000000001L),      NaNd},
67              {Double.longBitsToDouble(0x7FF8555555555555L),      NaNd},
68              {Double.longBitsToDouble(0xFFF8555555555555L),      NaNd},
69              {Double.longBitsToDouble(0x7FFFFFFFFFFFFFFFL),      NaNd},
70              {Double.longBitsToDouble(0xFFFFFFFFFFFFFFFFL),      NaNd},
71              {Double.longBitsToDouble(0x7FFDeadBeef00000L),      NaNd},
72              {Double.longBitsToDouble(0xFFFDeadBeef00000L),      NaNd},
73              {Double.longBitsToDouble(0x7FFCafeBabe00000L),      NaNd},
74              {Double.longBitsToDouble(0xFFFCafeBabe00000L),      NaNd},
75              {Double.NEGATIVE_INFINITY,  NaNd},
76              {-8.0,                      NaNd},
77              {-1.0,                      -infinityD},
78              {-0.0,                      -0.0},
79              {+0.0,                      +0.0},
80              {infinityD,                 infinityD},
81          };
82  
83          // Test special cases
84          for(int i = 0; i < testCases.length; i++) {
85              failures += testLog1pCaseWithUlpDiff(testCases[i][0],
86                                                   testCases[i][1], 0);
87          }
88  
89          // For |x| < 2^-54 log1p(x) ~= x
90          for(int i = DoubleConsts.MIN_SUB_EXPONENT; i <= -54; i++) {
91              double d = FpUtils.scalb(2, i);
92              failures += testLog1pCase(d, d);
93              failures += testLog1pCase(-d, -d);
94          }
95  
96          // For x > 2^53 log1p(x) ~= log(x)
97          for(int i = 53; i <= DoubleConsts.MAX_EXPONENT; i++) {
98              double d = FpUtils.scalb(2, i);
99              failures += testLog1pCaseWithUlpDiff(d, StrictMath.log(d), 2.001);
100         }
101 
102         // Construct random values with exponents ranging from -53 to
103         // 52 and compare against HP-15C formula.
104         java.util.Random rand = new java.util.Random();
105         for(int i = 0; i < 1000; i++) {
106             double d = rand.nextDouble();
107 
108             d = FpUtils.scalb(d, -53 - FpUtils.ilogb(d));
109 
110             for(int j = -53; j <= 52; j++) {
111                 failures += testLog1pCaseWithUlpDiff(d, hp15cLogp(d), 5);
112 
113                 d *= 2.0; // increase exponent by 1
114             }
115         }
116 
117         // Test for monotonicity failures near values y-1 where y ~=
118         // e^x.  Test two numbers before and two numbers after each
119         // chosen value; i.e.
120         //
121         // pcNeighbors[] =
122         // {nextDown(nextDown(pc)),
123         // nextDown(pc),
124         // pc,
125         // nextUp(pc),
126         // nextUp(nextUp(pc))}
127         //
128         // and we test that log1p(pcNeighbors[i]) <= log1p(pcNeighbors[i+1])
129         {
130             double pcNeighbors[] = new double[5];
131             double pcNeighborsLog1p[] = new double[5];
132             double pcNeighborsStrictLog1p[] = new double[5];
133 
134             for(int i = -36; i <= 36; i++) {
135                 double pc = StrictMath.pow(Math.E, i) - 1;
136 
137                 pcNeighbors[2] = pc;
138                 pcNeighbors[1] = FpUtils.nextDown(pc);
139                 pcNeighbors[0] = FpUtils.nextDown(pcNeighbors[1]);
140                 pcNeighbors[3] = FpUtils.nextUp(pc);
141                 pcNeighbors[4] = FpUtils.nextUp(pcNeighbors[3]);
142 
143                 for(int j = 0; j < pcNeighbors.length; j++) {
144                     pcNeighborsLog1p[j]       =       Math.log1p(pcNeighbors[j]);
145                     pcNeighborsStrictLog1p[j] = StrictMath.log1p(pcNeighbors[j]);
146                 }
147 
148                 for(int j = 0; j < pcNeighborsLog1p.length-1; j++) {
149                     if(pcNeighborsLog1p[j] >  pcNeighborsLog1p[j+1] ) {
150                         failures++;
151                         System.err.println("Monotonicity failure for Math.log1p on " +
152                                           pcNeighbors[j] + " and "  +
153                                           pcNeighbors[j+1] + "\n\treturned " +
154                                           pcNeighborsLog1p[j] + " and " +
155                                           pcNeighborsLog1p[j+1] );
156                     }
157 
158                     if(pcNeighborsStrictLog1p[j] >  pcNeighborsStrictLog1p[j+1] ) {
159                         failures++;
160                         System.err.println("Monotonicity failure for StrictMath.log1p on " +
161                                           pcNeighbors[j] + " and "  +
162                                           pcNeighbors[j+1] + "\n\treturned " +
163                                           pcNeighborsStrictLog1p[j] + " and " +
164                                           pcNeighborsStrictLog1p[j+1] );
165                     }
166 
167 
168                 }
169 
170             }
171         }
172 
173         return failures;
174     }
175 
176     public static int testLog1pCase(double input,
177                                     double expected) {
178         return testLog1pCaseWithUlpDiff(input, expected, 1);
179     }
180 
181     public static int testLog1pCaseWithUlpDiff(double input,
182                                                double expected,
183                                                double ulps) {
184         int failures = 0;
185         failures += Tests.testUlpDiff("Math.lop1p(double",
186                                       input, Math.log1p(input),
187                                       expected, ulps);
188         failures += Tests.testUlpDiff("StrictMath.log1p(double",
189                                       input, StrictMath.log1p(input),
190                                       expected, ulps);
191         return failures;
192     }
193 
194     public static void main(String argv[]) {
195         int failures = 0;
196 
197         failures += testLog1p();
198 
199         if (failures > 0) {
200             System.err.println("Testing log1p incurred "
201                                + failures + " failures.");
202             throw new RuntimeException();
203         }
204     }
205 
206 }